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Chapter 7 
   

GLOBAL OPTIMIZATION AND MIXED INTEGER NONLINEAR PROGRAMMING 
 

Introduction 

  

Minimize:  z = cTy + f(x)             (7-1) 

Subject to: Ay + h(x) = 0             

  By + g(x) ≤ 0 

 x ∈ X = {x∣x ∈ Rn, xL ≤ x ≤ xU} 

 y ∈ Y = {y∣y ∈ {0, 1}m, Ay ≤ a} 

where x is a vector of continuous variables that represent the process variables such as flow rates, 
temperature, pressures, etc., and y is a set of binary variables that can be used to define the topology 
of the system representing the existence or non-existence of different processing units.  The 
nonlinearities in the economic and process models appear in the terms f(x), g(x) and h(x). 

 If any of the functions in Equations 7-1 are non-linear, the problem corresponds to a mixed 
integer non-linear programming problem (MINLP). If all functions are linear, it corresponds to a 
mixed-integer linear programming problem (MILP). If there are no binary variables (0-1) then the 
problem reduces to a non-linear programming problem (NLP) or linear programming problem 
(LP) depending on whether the functions are nonlinear or linear.   If there are only binary variables 
present, then it is an integer programing problem (IP). 

 Most deterministic solution methods for MINLP apply some form of tree-search. There are 
two broad classes of methods: single-tree and multi-tree methods. Classical single-tree methods 
include nonlinear branch-and-bound and branch-and-cut methods, while classical multi-tree 
methods include outer approximation and Benders decomposition. The most efficient class of 
methods for convex MINLP are hybrid methods that combine the strengths of both classes of 
classical techniques. 

 

 Deterministic optimization of a MINLP problem is usually accomplished using an 
algorithm like the branch and bound or the inner-outer method. These algorithms solve a series of 
NLP problems that typically use the generalized reduced gradient method or successive 
(sequential) quadratic programming. These NLP algorithms have a super-rate of convergence and 
locate the optimum in 2n steps for quadratic functions. 

 Depending on the character of the objective function and constraints, the NLP algorithms 
will locate a point better than the starting point. If the objective function and constraint equations 
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are second order differentiable, the algorithms will locate extreme points (maxima, minima or 
saddle points. Necessary conditions are used to determine extreme points, and sufficient condition 
are used to determine the character of the extreme points. If the objective function and constraints 
are convex functions the extreme point located is a global optimum.  

 To locate the extreme points of a nonlinear programming problem, the Lagrange function 
is used. To form this function the constraint equations are multiplied by Lagrange multipliers and 
added to the objective function.  The inequality constraint equations have been converted equality 
constraint equations by incorporating slack variables. This unconstrained equation, called the 
Lagrange function, is partially differentiated with respect to the independent variables and the 
Lagrange multipliers, and the resulting set of equations are set = 0. Differentiating the Lagrange 
function with respect to the Lagrange multipliers returns the constraint equations.  Solutions to the 
set of equations are extreme points for the constrained problem, and they are called Kuhn-Tucker 
points. Extreme points can be maximum, minimum or saddle points that are located by this 
necessary condition. Sufficient conditions are required to determine the character of the extreme 
points. See the details of this development in Chapter 2. 

Examples of illustrative MINLP problems are given by Belotti, et.al., 2012 for the design 
of multiproduct batch plants and design of water distribution network, and they illustrate problem 
reformulation, convex relaxation, relaxation of structured nonconvex sets, and heuristics.    Byrne 
and Bogle 2000 have examples for optimization of an interval process flow sheet and the classic 
Haverly pooling problem. Examples of heat exchange and reactor networks, blending and pooling, 
and several for chemical process are given by Sahinidis, 2005. Trespalacios and Grossmann 2014 
have an example for a process superstructure optimization. 

 Nonconvex MINLPs pose additional challenges, because they contain nonconvex 
functions in the objective or the constraints. Even when the integer variables are relaxed to be 
continuous, the feasible region is generally nonconvex, resulting in many local minima. A range 
of approaches are used to tackle this challenging class of problems, they include piecewise linear 
approximations, generic strategies for obtaining convex relaxations of nonconvex functions, 
spatial branch-and-bound methods, and a small sample of techniques that exploit types of 
nonconvex structures to obtain improved convex relaxations, Belotti, et.al., 2012. Several 
strategies for solving nonconvex MINLPs are reported by Trespalacios and Grossmann 2014 
including relaxation and several types of bound tightening.  

 Equation (7-1) is said to be a NP-hard combinatorial problem, because it includes MILP 
and its solution typically requires searching enormous search trees. For (7-1) to be decidable, either 
X is compact or that the problem functions are convex. Nonconvex integer optimization problems 
are in general undecidable, Belotti, et.al., 2012. Jeroslow1973 describes a study of a class of integer 
programming problems with square of variables in constraints that “no computing device can be 
programmed to compute the optimum criteria value for all problems in this class.”  Jeroslow, 1974 
reports on trivial integer programs unsolvable by branch and bound.    

In computational complexity theory, NP (for nondeterministic polynomial time) is a 
complexity class that is used to describe certain types of decision problems. A formal definition 
of NP is the set of decision problems solvable in polynomial time by a theoretical non-deterministic 
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Turing machine. In theoretical computer science, a Turing machine is a theoretical machine that is 
used in thought experiments to examine the abilities and limitations of computers. A decision 
problem is solved using an algorithm. For NP, polynomial time refers to the increasing number of 
machine operations needed by an algorithm relative to the size of the problem. Decision problems 
are commonly categorized into complexity classes (such as NP) based on the fastest known 
machine algorithms. An example of an NP-hard problem is the optimization problem of finding 
the least-cost cyclic route through all nodes of a weighted graph, the traveling salesman problem. 
(Wikipedia, NP-hardness, accessed 4-19-18). 

Global Optimization Algorithms 

 Global optimization is the task of finding the absolutely best set of values of variables to 
optimize an objective function (Gray et al., 1997). Global optimization problems are typically 
difficult to solve. Global optimization problems are solved by extension of ideas from local 
optimization. These algorithms are integrated into computer programs for solving MINLP 
problems. Both Pinter, 2014 and Trespalacios and Grossmann 2014 provide reviews of the more 
successful global algorithms and results of robustness vs. efficiency in practically motivated test 
problems. 

  Global optimization is a branch of applied mathematics and numerical analysis that deals 
with the global optimization of a function or a set of functions according to some criteria. Typically, 
a set of bound and more general constraints is also present, and the decision variables are optimized 
considering these constraints.  Global optimization is distinguished from regular optimization by 
its focus on finding the maximum or minimum over all input values, as opposed to finding local 
minima or maxima. The Journal of Global Optimization, Springer, is one source of numerous 
publications on the multiplicity of methods tried to solve global optimization problems.   

 Significant research has been spent developing algorithms that find the global optimum of 
a problem directly. This would eliminate using the procedure of finding all the local optima and 
then comparing these local optima to find the largest one, the “global optimum”.  

 Global optimization algorithms are either deterministic or stochastic methods. The most 
successful deterministic strategies include inner and outer approximation methods, branch and 
bound methods, cutting plane methods and interval bounding methods. Successful stochastic 
strategies include random search, genetic algorithms and simulated annealing. 

 Deterministic Methods: Global optimization uses several optimization algorithms 
together to locate the global optimum of a mixed integer nonlinear programming problem directly.  
The Branch and Bound algorithm can be used to separate the original problem into sub-problems 
that can be eliminated by showing these sub-problems that cannot lead to better points.  The Bound 
Constraint Approximation algorithm rewrites the constraints in a linear approximate form, so a 
MILP solver can be used to give an approximate solution to the original problem. Penalty and 
barrier functions can be used for constraints that cannot be linearized.  Branching is performed on 
local optima to proceed to the global optimum using a sequence of feasible sets (boxes).  Another 
algorithm, Box Reduction uses constraint propagation, interval analysis, convex relations and 
duality arguments involving Lagrange multipliers. The Interval Analysis algorithm attempts to 
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reduce the interval on the independent variables that contains the global optimum.  The Leading 
Global Optimization Solver BARON (Branch and Reduce Optimization Navigator) developed by 
Professor Nikolaos V. Sahinidis and colleagues at the University of Illinois is a GAMS solver.  
Global optimization solvers are currently in the code-testing phase of development that occurred 
20 years ago for NLP solvers. 

 Stochastic Methods:  The more successful stochastic strategies include random search, 
genetic algorithms and simulated annealing.  Random search is a stochastic method that places 
measurements (evaluation of the objective function) randomly in the initial intervals of the 
independent variables.  Depending on the number of experiments used, the values of the objective 
function are ranked, and it can be said statistically that the maximum (or minimum) is in the top x 
percent with a y probability.  The values of the initial intervals can be adjusted based on these 
results to have smaller region to search, and random measurements are placed in the new region 
(creeping random search). See Pike, 2013.  
 
 Genetic algorithms, annealing algorithms, tabu search, artificial neural networks, among 
others, use randomized search techniques for finding near optimal solutions of combinatorial 
optimization problems (Pardalos and Resende, 2002 and Schaffer, 2012).  The idea behind using 
artificial neural networks is to map the optimization problem into a highly-interconnected network 
of neurons, and a particular configuration of neurons being on or off determines the value of the 
objective function.  The procedure uses an activation function to transform the neurons to locate 
the configuration that approaches the global solution of the objective function. A sigmoid function 
is said to be the most used activation function in the artificial neural network literature (Trafalis 
and Kaspa 2002.) 
 
 Simulated annealing is a family of randomized algorithms for locating near optimal 
solutions of combinatorial optimization problems using the idea of annealing in metallurgy, a 
technique involving heating and controlled cooling of a material to increase the size of its crystals 
and reduce their defects. Slow cooling is used as an analogy to decrease in the probability of 
accepting worse solutions as it explores the solution space because it allows for a more extensive 
search for the optimal solution. Steps with improvements are accepted and ones that do not 
improve the value of the objective function are accepted within a certain probability. The goal is 
to bring the system, from an arbitrary initial state to a state with the minimum possible 
thermodynamic free energy.  Threshold algorithms are used to move to improved values of the 
objective function and are described by Aarts and Ten Eikelder 2002. 
 
 Genetic algorithms (Goldberg, 1989) use search heuristic that mimics the process of natural 
selection to generate useful solutions to optimization problems.  The initial solution starts from a 
population of randomly generated individuals and moves based on heuristics.  New solutions are 
combined with old solutions to generate improved solutions, ones that move to the optimum of the 
objective function.  The algorithm terminates when a maximum number of iterations is reached, 
or a satisfactory value of the objective function has been obtained.  
 
 A comparison of deterministic and stochastic approaches for global optimization for 
chemical process design by Choi and Manousiouthakis, 2002 describes pseudocode for a simulated 
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annealing and a genetic algorithm among other deterministic and stochastic ones.  Their simulated 
annealing algorithm is reproduced below to illustrate stochastic methods.    
 
 Consider a collection of atoms in equilibrium at a given temperature, T. Displacement of 
an atom causes a change DE in the energy of the system. If DE<0, the displacement is accepted. If 
DE >0, the probability that the displacement is accepted is exp (-DE/kT) where k is the Boltzmann 
constant. The process can be simulated for optimization as follows. 
 
 For minimization of objective function f(x) 
 1. Take xnew randomly. 
 2. If =Df = f(xnew)– f(xold) < 0 accept xnew. 
 Otherwise, 
 a.  Take a random number w∈ [0, 1].  
 b. If w < exp (-DE/kT), then accept xnew 
 Otherwise, xold = xnew. 
 Control T, and repeat. 
 
They conclude that chemical process optimization problems are high rank, non-complex problems, 
and the guarantee of global optimally is still computationally too expensive.	Stochastic algorithms 
inevitably take forever to obtain a solution where optimality is guaranteed. 
 
 Interval Methods:  These methods start by bounding the intervals on the independent 
variables that contain the global optimum.  Then they proceed to reduce the bounds on these 
variables by various means to have final intervals of the desired precision containing the global 
optimum.  These types of methods evaluate each constraint with the current variable bounds and 
try to improve bounds by maintaining feasibility in the constraints. A recent method uses pairs of 
constraints instead of individual constraints to infer bounds. Different techniques have been 
developed to infer bounds on MILP problems and on MINLP problems.  Details are provided by 
Trespalacios and Grossmann 2014. 
 
Global Optimization for Chemical Process Systems 

 Deterministic optimization of a MINLP problem for a chemical process system is usually 
accomplished using an algorithm like the branch and bound or the inner-outer method. These 
algorithms solve a series of NLP problems that typically use the generalized reduced gradient 
method (GRG) or successive (sequential) quadratic programming (SQP). These NLP algorithms 
have a super-rate of convergence and locate the optimum in 2n steps for quadratic functions. 

  Depending on the character of the objective function and constraints, the NLP algorithms 
will locate a point better than the starting point. If the objective function and constraint equations 
are second order differentiable, the algorithms will locate extreme points (maxima, minima or 
saddle points). Necessary conditions are used to determine extreme points, and sufficient condition 
are used to determine the character of the extreme points. If the objective function is concave and 
the constraint equations are convex the extreme point is a minimum.   



	 326	

 Branch and Bound Methods: These methods use a systematic enumeration of candidate 
solutions that are thought of as forming a tree with the full set of solutions at the top of the tree. 
The algorithm explores branches of this tree that represent subsets of the solution set. Each branch 
is checked against upper and lower estimated bounds on the optimal solution and branches are 
discarded if they cannot produce a better solution than the best one found so far by the algorithm.  
Nonlinear branch and bound is an extension to the well-known linear branch and bound algorithm. 
To find optimality, the method performs a tree search on the integer variables. It first solves the 
continuous relaxation problem (r-MINLP). If the solution yields integer values to all integer 
variables, then it is optimal, and the algorithm stops. If it is not, a branching heuristic is used to 
select an integer variable whose value at the current node is not integer (yi =  yi 0).  A branching is 
performed in this variable, giving rise to two new NLP problems. One NLP includes the bound yi  
<  yi 0 while the other one yi  > y i 0 i.e.,  yi = 0 or yi = 1 if the integer variables are binary (0 – 1) 
variables.  
 
 This procedure is repeated until the tree search is exhausted. If an integer feasible solution 
is found, i.e., the solution provides integer values to all the integer variables, then it provides an 
upper bound. There are two cases in which some of the nodes are pruned, which make the branch 
and bound method faster than enumerating every node. The first case in which a node is pruned 
occurs when the NLP corresponding to the node is infeasible. The second case occurs when the 
solution of the NLP of the node is larger than the current upper bound for minimization. A detailed 
description of this algorithm is given by Trespalacios and Grossmann, 2014 and Schaffer, 2012. 
 

The general form of a convex MINLP model is:  

min z = f (x, y)         (7-2) 

s.t.  g(x, y) ≤0 

x∈ X 

 y∈Y 

where f and g are twice continuously differentiable functions and are convex functions, x are the 
continuous variables, and y the discrete variables. The Kuhn-Tucker conditions are necessary and 
sufficient for a global (absolute) maximum (Cooper, 1981). Note: Theorem 20, If f(x) is strictly a 
concave function and gi(x) are convex functions, for the NLP, (max f(x) subject to gi(x) < bi, i = 
1, 2, ..., m,) which are continuous and differentiable, the Kuhn-Tucker conditions are sufficient as 
well as well as necessary for an absolute maximum, ref. (Cooper, 1981) 

 Branch and Bound Algorithm.  Nonlinear branch and bound is based on the branch and 
bound algorithm for MILP.  The idea of the branch-and-bound technique is to divide and conquer. 
If the original problem is very large, then it would be difficult to solve it directly; and hence it is 
divided into smaller and smaller subproblems (nodes) until these subproblems can be solved easily 
or conquered.  
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 The solution to four NLP problems is used in the branch and bound method and other 
methods.  One is a linear approximation to the convex MINLP about point P (p=1, 2, ...P) and is 
called a relaxation of the MINLP (M-MIP). The second is the continuous relaxation of the MINLP 
and is called (r-MINLP) where the integer variables are treated as continuous and gives the lower 
bound to the MINLP.  The third is for a fixed yp in the convex MINLP; this NLP (fx-MINLP) and 
is any feasible solutions to this NLP (fx-MINLP) is an upper bound on the MINLP. The fourth is 
when there is not a feasible solution to the NLP (fx-MINLP), the following feasible NLP (feas-
MINLP) is solved to minimize the infeasibility of the most violated constraint, g (x, y) ≤ eu   where 
e is a vector of ones (Trespalacios and Grossmann 2014). 

• A linear approximation to the convex MINLP about point P (p=1, 2, ...P) is called a relaxation 
of the MINLP (M-MIP) and is given by:  

 min a 

 s.t.  f(xp,yp) + ∇f(xp,yp)•[ (x - xp), (y - yp)] < a  for p = 1,2, … P M-MIP 

  g(xp,yp) + ∇g(xp,yp)•[ (x - xp), (y - yp)] < 0 

The linear approximation provides a lower bound to the MINLP because of the convexity of the 
MINLP.  If this relaxation is infeasible, then MINLP is also infeasible. If the solution of the 
relaxation is integer, then it also solves the MINLP. 

• The continuous relaxation of the MINLP is given by the following NLP (r-MINLP): 

min z = f (x, y) 

s.t.  g (x, y) ≤ 0     r-MINLP 

x∈ X 

 y∈YR 

where the integer variables are treated as continuous. YR is a continuous relaxation of Y with upper 
and lower bounds, ylo < y < yup. Any feasible solutions to this NLP (r-MINLP) is a lower bound 
on the MINLP. 

• For a fixed yp in the convex MINLP, the NLP (fx-MINLP) is: 

min z = f (x, yp)  

s.t.  g (x, yp) ≤ 0 x∈ X    fx-MINLP 

Any feasible solutions to this NLP (fx-MINLP) is an upper bound on the MINLP. 

• When there is not a feasible solution to the NLP (fx-MINLP), the following feasible NLP (feas-
MINLP) is solved to minimize the infeasibility of the most violated constraint. 

min u  
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s.t.  g(x, y) ≤ eu    feas-MINLP 

x∈ X 

 u ∈	R 

where e is a vector of ones.  

 For a node Np, let zp denote the optimal value of the corresponding NLPp, and (xp, yp) its 
solution. Let L be the set of nodes to be solved, and NLP0 be (r-MINLP), continuous relaxation 
of the MINLP.   Let zlo and zup be, respectively, a lower and upper bound of the optimal value of 
the objective function z*. A tolerance for termination 𝜀 > 0 is specified.   

 For Node Selection to start and continue an algorithm, select a noninteger basis variable yi 
in the MINLP problem (initially, the r-MINLP relaxation solution). Construct NLPp1 and NLPp2 
by adding one of the constraints:  yi ≤ yip and yi  >  yip in each of the problems (or yi  = 0 and yi  = 
1, if yi is a binary variable). 

 If there are more than one noninteger basis variables in the problem, then any one of them 
can be selected for branching. The solution may move more rapidly by selecting the variable with 
the largest fractional value.  

 Solving NLPp1 and NLPp2 begin the formation of a tree structure. If an integer feasible 
solution is found, i.e., the solution provides integer values to all the integer variables, then it 
provides an upper bound. There are two cases in which some of the nodes are pruned i.e., no further 
branching, which make the branch and bound method faster than enumerating every node. The 
first case in which a node is pruned occurs when the NLP corresponding to the node is infeasible. 
The second case occurs when the solution of the NLP of the node is larger than the current upper 
bound for minimization (Trespalacios and Grossmann 2014). Continuing, this procedure is 
repeated until the tree search is exhausted. 
 
Begin the branch and bound Algorithm for minimizing. The algorithm uses a series of steps as 
follows. 

•  Step 0:  Initialization: Solve the continuous relaxation NLP, (r-MINLP).  

L = N0, zup = ∞, (x*, y*) = 0 

•  Step 1: Terminate? 

If the continuous relaxation solution NLP0 (r-MINLP), yields integer values to all integer variables 
(L = 0), then (x*, y*) is optimal and the algorithm stops. 

If an integer solution has not been found, then the r-MINLP solution, NLP0, provides an upper 
bound, zup, to the MINLP because the optimal integer solution cannot have an objective function 
value larger than the r-MINLP solution. The imposition of integer restriction on y can only 
decrease the optimal value of the MINLP. 
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A lower bound zlo for the optimal objective function value is equal to the objective value at some 
point that is feasible for the MINLP problem. This could be where all the variables are zero or 
some comparable solution that satisfies all the constraints and that will surely be smaller than the 
final optimal value.  

If no such feasible point is readily known for the lower bound, set zlo = - ∞. This lower bound 
solution is designated as the incumbent solution. This means that it is the best MINLP solution 
obtained so far. When a better integer feasible point is obtained as the solution proceeds, then that 
would be the new incumbent solution. 

The linear approximation provides a lower bound to the MINLP (M-MIP) because of the convexity 
of the MINLP.  If this relaxation is infeasible, then MINLP is also infeasible. If the solution of the 
relaxation is integer, then it also solves the MINLP. 

• Step 2: Node Selection 

Select a noninteger basis variable yi in the MINLP problem (initially, the r-MINLP relaxation 
solution). A branching is performed in this variable, giving rise to two new NLP problems. 
Construct NLPp1 and NLPp2 by adding one of the constraints yi ≤ yip and yi > yip in each of the 
problems (or yi = 0 and yi = 1, if yi is a binary variable). 

One NLP includes the bound yi < yi 0 while the other one yi > y i 0 i.e., yi = 0 or yi = 1 if the integer 
variables are binary (0 – 1) variables.  
 
If there is more than one noninteger basis variables in the problem, then any one of them can be 
selected for branching. The solution may move more rapidly by selecting the variable with the 
largest fractional value.  

•  Step 3: Branch. (Partition problem into two subsets) 

Branching is accomplished by adding constraints to the MINLP problem to exclude the noninteger 
values of the chosen basis variable. For example, if the current solution has the values y = [0, 2.5, 
3], then this set is partitioned further into two subsets by adding an additional constraint to exclude 
the noninteger value of the variable. (In this case, y2). The additional constraints for the two subsets 
would be y2 ≤ 2 and y2 ≥ 3 respectively. 

•  Step 4: Bound. (Solve NLP's, NLPp1 and NLPp2, from subsets) 

Solve the two new problems, NLPp1 and NLPp2 that are obtained by appending the extra constraint 
as a result of Step 3. These are designated as subsets, and their resulting optimal values (if they are 
not infeasible) would be the upper bound zup for that branch when the subset is developed.  
Additional integer constraints are added in expanding branches 

Step 5: Fathom (Prune) 

Tests for the solution of NLPp1 and NLPp2 to determine if further branching is required. 
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(a) zup ≤ zlo, i.e. NLP objective function value is less than the lower bound, and no further      
evaluations are needed. 

(b) The NLP has no feasible points, and no further evaluations are needed. 

(c) If zup is an integer feasible solution and zup > zlo, then this is the new incumbent solution, 
since it is the best integer solution obtained thus far. 

Select a subset among those from Step 4 that has noninteger values for branching. If all subsets 
have been fathomed or pruned, the incumbent solution is optimal for MINLP. Otherwise, return 
to Step 2.   

Example 7-1.  This is an example of branch and bound for a MINLP problem modified from 
Sahinidis, N., 2005.  The diagram in Figure 7-1 shows the constraint equations and the objective 
function with P as a parameter. 

max:  P = +x1 + x2 

s.t.  x1 x2 < 4 

 0 < x1 < 6 

 0 < x2 < 4 

Continuous relaxation solution: 

x1 = 6, x2 = 0.67, P = 6.67, upper bound = 6.67, lower bound = 0.0 

Branching on x2 using the two constraints added the original MINLP: 

x2 > 1, x2 < 1 

max:  P = + x1 + x2   max:  P = +x1 + x2 

s.t.  x1 x2 < 4   s.t.  x1 x2 < 4 

 0 < x1 < 6    0 < x1 < 6 

 0 < x2 < 4    0 < x2 < 4 

x2 > 1     x2 < 1 
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The solutions to the above two problems are: 

x1 = 5, x2 = 1, P = 6, upper bound = 6. lower bound x1 = 6, for problem with x2 > 1 

x1 = 6, x2 = 0.67, P = 6.67, upper bound = 6.67, lower bound = 6 for problem with x2 < 1. 

 

Figure 7-1 Diagram of Example Problem 7-1 

The global maximum is the optimal solution of MINLP problem with constraint of x2 > 1. Both x1 
and x2 are integers.  This simple problem only had one noninteger variable for branching, x2, since 
x1 was a integer from the continuous relaxation solution. For more complex MINLPs the procedure 
for branching and bounding is the same, select a noninteger variable and form two new MINLP’s 
with inequality constraints. 

Selection of branching variable is a crucial component of branch-and-bound. A simple 
branching rule is to select the variable with the largest integer violation for branching which is 
known as maximum fractional branching. In practice however, this branching rule is not efficient: 
it performs about as well as randomly selecting a branching variable.  Details on five efficient 
methods are described by Belotti et al, 2012.   The more successful branching rules estimate the 
change in the lower bound after branching including pseudo-costs branching, reliability branching 
and branching on general disjunctions. 

Node selection strategies refers to important decisions about which node should be solved 
next. The goal of this strategy is to find a good feasible solution quickly in order to reduce the 
upper bound, and to prove optimality of the current incumbent x∗ by increasing the lower bound 
as quickly as possible. Two popular strategies, depth-first search and best-bound search, have 
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strengths and weaknesses as described by Belotti et al, 2012.  Also, they present two hybrid 
schemes that aim to overcome the weaknesses of these two strategies are described, best bound 
search and hybrid search. 

Other methods for solving MINLP problems include cutting planes, multi-tree methods, 
outer approximation, generalized Benders decomposition and single-tree methods Disjunctive cuts 
are used in the class of convex MINLPs where the only nonconvex constraints are represented by 
integer variables, and these non-convexities are resolved by integer branching, which represents a 
specific class of disjunctions. Generic relaxation strategies are methods for finding a relaxation to 
exploit the structure of the problem. For a broad class of MINLP problems, the objective function 
and the constraints are nonlinear but factorable, in other words, they can be expressed as the sum 
of products of unary functions.  See details given by Belotti et al, 2012 and Grossmann and 
Trespalacios, 2013.   

Inner and Outer Approximation Methods: Outer-approximation (OA) makes use of two 
problems: (M-MIP) and (fx-MINLP). The approach is to use the approximate linear problem (M-
MIP) to find a lower bound (zlo) and obtain an integer solution to the approximate problem (yp). 
This lower bounding problem is called master problem. For the subproblem, the binary variables 
yp are fixed, and then (fx-MINLP) is solved. If the solution to (fx-MINLP) is feasible, then it 
provides an upper bound. If it is not, (feas-MINLP) is solved to provide information about the 
subproblem, and an inequality that cuts off that integer solution is added. This method is performed 
iteratively until the gap of zlo and zup (the best upper bound) is less than the specified tolerance. At 
each iteration, the sub-problem (either (fx-MINLP) or (feas-MINLP)) provides a solution (xp, yp) 
that is included in the master problem (M-MIP) to improve the approximation. Since the function 
linearizations are accumulated, the lower bounding problem (or master problem) yields a 
nondecreasing lower bound (zlo,1 ≤ zlo,2 ≤ … ≤ zlop). The outer-approximation algorithm is 
described in more detail by Trespalacios and Grossmann 2014. 
 
 Generalized Benders Decomposition (GBD):  This method is similar to the OA method, 
but they differ in the linear master problem. The master problem of the GBD considers the discrete 
variables y ∈ Y, and the active inequalities Jp = { j|gj(xp, yp ) = 0}. Details for this algorithm are 
given by Trespalacios and Grossmann 2014. 
 
 Extended Cutting Plane (ECP): This method is similar to the OA method, but it avoids 
solving NLP sub-problems. At a given solution of the master MILP (M-MIP), all the constraints 
are linearized. A subset of the most violated linearized constraints is then added to the master 
problem. Convergence is achieved when the maximum violation lies within a specified tolerance. 
The algorithm has nondecreasing a lower bound after each iteration.  The main strength of the 
method is that it relies solely in the solution of MILPs. Similarly, to the OA method, it solves the 
problem in one iteration if f (x, y), and g (x, y) are linear. Two downsides in the algorithm are that 
convergence can be slow and that the algorithm does not provide an upper bound (or feasible 
solution) until it converges (Trespalacios and Grossmann 2014). 
 

Heuristic Search Techniques: Heuristics have been developed for solving MINLPs when 
applications are too large to be solved. Very large problems generate a huge search tree or must 



	 333	

be solved in real time. In these situations, it is more desirable to obtain a good solution quickly 
than to wait for an optimal solution. It is necessary to resort to heuristic search techniques that 
provide a feasible point without any optimality guarantees. Heuristics can accelerate rigoristic 
techniques by quickly identifying an incumbent with a low value of the objective function. This 
upper bound can then be used to prune a larger number of the nodes in the branch- and-bound 
algorithm. Two classes of heuristic search techniques are probabilistic search and deterministic 
search. Probabilistic search refers to techniques that require at each iteration a random choice of a 
candidate solution or parameters that determine a solution. Deterministic techniques, for example 
can run branch-and-bound for a fixed time or fixed number of nodes or until it finds its first 
incumbent. Heuristics can be of two types: search heuristics, which search for a solution without 
the help of any known solutions, and improvement heuristics, which improve upon a given solution 
or a set of solutions. Details are given by Belotti et al, 2012. 

 An important area of application of mathematical programming is optimization in the 
synthesis of process flow sheets.  A general overview of the MINLP approach and algorithms for 
process synthesis was presented by Grossmann, (1990).  A basic understanding of several 
algorithmic techniques as well as the relative strengths, weaknesses and difficulties have been 
detailed.  Also, it was shown that effective modelling schemes and solution strategies can play a 
crucial role in the successful application of techniques.  According to the author, the major steps 
involved in the MINLP approach include postulating a superstructure that has several feasible and 
optimal design alternatives.  This superstructure is then modelled as an MINLP problem in which 
0-1 variables are assigned to the potential existence of units, and continuous variables to the flows, 
temp, pressure, sizes, etc. Then the optimal design is extracted from the superstructure by solving 
the MINLP problem.  Good MINLP formulation can be done by keeping the problem as linear and 
convex as possible, and by having a tight NLP relaxation.  In order to increase the reliability and 
efficiency of the solution procedure, it is also important to recognize the special structure and 
properties that characterize the optimal synthesis of process systems. 

Non-Convex MINLPs 

 A common approach for approximately solving MINLPs with nonconvex functions is to 
replace the nonlinear functions with piecewise linear approximations, leading to an approximation 
that can be solved by mixed-integer linear programming solvers. However, A very large literature 
on global optimization includes several textbooks and review articles.  MINLP is one of the most 
complex and active fields in optimization according to Trespalacios and Grossmann 2014. 
Accurate modeling of many industrial problems, particularly in chemical engineering, requires the 
use of nonconvex constraints. They described spatial branch and bound as the most widely used 
method to solve non- convex MINLP. Two main concepts used in most applications are relaxations 
of factorable formulations and bounds tightening. Their description includes feasibility-based,	
optimality-based,	reduced-cost, and probing bound tightening methods.   

 Spatial branch-and-bound is the best-known method for solving nonconvex MINLP 
problems, according to Belotti, et.al., 2012. Most modern MINLP solvers designed for nonconvex 
problems utilize a combination of the techniques, in particular, they are branch-and-bound 
algorithms with at least one rudimentary bound-tightening technique and a lower-bounding 
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procedure. Methods used by several established MINLP solvers are described, including BARON, 
COCONUT, COUENNE and LindoGlobal.   

 In relaxations of structured nonconvex constraints, this approach is used to relax any 
constraint containing a nonlinear function that can be factored into simpler primitive functions 
which have known relaxations. Then this relaxation is refined after spatial branching. When 
combined with relaxation and branching on integer variables, this leads to algorithms that can 
(theoretically) solve almost any MINLP with explicitly given nonlinear constraints. The drawback 
of this general approach is that the relaxation obtained may be weak compared with the tightest 
possible relaxation, and the convex hull of feasible solutions leads to an impractically large branch-
and-bound search tree, Belotti, et.al., 2012. 

GAMS (General Algebraic Modeling System) Programming Language 

 The General Algebraic Modeling System (GAMS) is a high-level modeling language for 
mathematical programming and optimization. It consists of a language compiler and integrated 
high-performance solvers. GAMS is tailored for complex, large scale modeling applications, and 
allows building of large maintainable models that can be adapted quickly to new situations. The 
GAMS offer a wide range of solvers that allow the optimization based on type of problem. These 
include LP, NLP, MILP, MINLP and Global optimization solvers. The GAMS (General Algebraic 
Modeling System) programming language was developed by the GAMS Development 
Corporation 1217 Potomac Street, NW, Washington, D.C. 20007 (http://www.gams.com).   

 GAMS is specifically designed for solving linear, nonlinear and mixed integer optimization 
problems. The system is especially useful with large, complex problems. GAMS is available for 
use on personal computers, workstations, mainframes and supercomputers.  GAMS is able to 
formulate models in many different types of problem classes and switching from one model type 
to another can be done with a minimum of effort. The same data, variables, and equations can be 
used in different types of models at the same time. 

 GAMS model types include Linear Programming (LP), Mixed-Integer Programming 
(MIP), Mixed-Integer Non-Linear Programming (MINLP), and different forms of Non-Linear 
Programming (NLP).   There are over 30 solvers (optimization codes) that can be selected to solve 
these programming problems.  Note, “programming,” means “scheduling” and not “computer 
programming.”  An extensive list of solvers can be found at GAMS website (www.GAMS.com) 
for solving LP, NLP, MIP, MILP and MINLP problems.  The solvers used to solve the global 
optimization problem in the Chemical Complex Analysis System were BARON and 
LINDOGLOBA. 

 GAMS Distribution 25.1.1is currently available (5-19-18) for download from the GAMS 
web site www.GAMS.com without charge.  GAMS will operate as a free demo system without a 
valid GAMS license.  The model limits in demo mode are 300 constraints and variables, 2000 
nonzero elements, (of which 1000 can be nonlinear), 50 discrete variables (including semi 
continuous, semi integer and member of SOS-Sets) with additional global solver limits of 10 
constraints and variables. There are the installation notes for Windows, Mac, and UNIX. The 
GAMS distribution includes the GAMS Manuals in electronic form, and hard copies can be 
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ordered through Amazon. 

 The NEOS Server for Optimization hosted by the Argonne National Laboratory is an open 
and free to use server for solving optimization problems (NEOS, 2010). The optimization solvers 
at NEOS represent the state-of-the-art in optimization software. Optimization problems are solved 
automatically with minimal input from the user. The users only need a definition of the 
optimization problem, and all additional information required by the optimization solver is 
determined automatically by the server. For example, the solver choice for MINLP is required, but 
the sub-choices for LP and NLP need not be specified in the server.  

MINLP Solver Performance 
 
 An overview of the start-of-the-art in software for the solution of mixed integer nonlinear 
programs (MINLP) is given by Bussieck and Vigerske, 2014, of GAMS that describes various 
features of embedded and independent solvers with a concise description for each solver to provide 
to guide the selection of a best solver for a particular MINLP problem.  They establish several 
groupings with respect to various features and give concise individual descriptions for each solver. 
The objective is to provided information to guide the selection of a best solver for a particular 
MINLP problem.  Global optimization of MINLP requires an effective algorithm or combination 
of algorithms, usually LP, MIP and NLP, implemented in programming languages, and run on a 
computer with an operating system for linear or parallel operations.  Over time there have been 
research results reported on efficient algorithms for sets of problems.  The sets of problems have 
become comparable in size to industrial plants, and algorithms (solvers) have improved 
correspondingly.  Algorithms for solving MINLPs are built by combining algorithms from linear 
programming, integer programming, and nonlinear programming, e.g., branch and bound, outer 
approximation, local search, global optimization.  MINLP solvers often combine LP, MIP, and 
NLP solvers.  Some solvers that guarantee global optimal solutions for general convex MINLPs 
but not for general nonconvex MINLP. In case of a nonconvex MINLP, these solvers can still be 
used as a heuristic. Especially branch and bound based algorithms that use NLPs for bounding 
often find good solutions.  Solvers that also guarantee global optimality for nonconvex general 
MINLPs require an algebraic representation of the functions f(x, y) and g(x, y) for the computation 
of convex envelopes and underestimators. Each function needs to be provided as a composition of 
basic arithmetic operations and functions (addition, multiplication, power, exponential, 
trigonometric, ...) on constants and variables. Over time there have been research results reported 
on efficient algorithms for sets of problems.  The sets of problems have become comparable in 
size to industrial plants, and algorithms (solvers) have improved correspondingly.  
 
 A review of deterministic software for solving convex MINLP problems was given by 
Kronqvista et al., 2018.  It included a comprehensive comparison of a large selection of commonly 
available solvers.  MINLPLib included a test set of 366 convex MINLP instances. All MINLP 
instances were classified as convex in the problem library. A summary of the most common 
methods for solving convex MINLP problems was given to better highlight the differences 
between the solvers. To show how the solvers perform on problems with different properties, the 
test set was divided into subsets based on the integer relaxation gap, degree of nonlinearity, and 
the relative number of discrete variables. The results presented provide guidelines on how well 
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suited a specific solver or method is for particular types of MINLP problems.	BARON was said to 
be very efficient at identifying problems as convex since it is able to deal with these problems in 
such an efficient manner.	The solvers were used programming languages GAMS, AMPL, and 
AIMMS. 
 
 Comparisons of global optimization programs (solvers) are given for a chemical production 
complex optimization with new processes for chemicals from biomass (Sengupta and Pike, 2012.) 
The optimal structure was determined from the superstructure of global optimization problem in 
the Chemical Complex Analysis System using five different solvers from the NEOS server. These 
were DICOPT, SBB, BARON, ALPHAECP and LINDOGLOBAL. Two of these solvers were 
listed exclusively under global solvers that accepted GAMS input (BARON and 
LINDOGLOBAL), and the other three were listed under MINLP solvers (DICOPT, SBB, 
ALPHAECP). The results for computation time and solver status from the NEOS server solution 
are given in Table 10-1 from Sengupta and Pike, 2012. The SBB, DICOPT and BARON gave a 
normal completion with identical solutions for the objective value.  Computational, generation and 
execution times were comparable. The LINDOGLOBAL was unable to solve because of an 
iteration interrupt. The ALPHAECP gave a normal completion with infeasible solution. Table 10-
2 gives the comparison of the solution using SBB in the NEOS server and the local machine, an 
Intel PC, and the results were the same. 
 
 The most common method to solve nonconvex MINLPs to ε-global optimality is spatial 
branch-and-bound that recursively divides the original problem into subproblems on smaller 
domains until the individual subproblems are easy to solve (Vigerske and Gleixnerscip, 2016). 
Bounding is used to decide early whether improving solutions can be found in a subtree. These 
bounds are computed from a convex relaxation of the problem, that is obtained by dropping the 
integrality requirements and relaxing nonlinear constraints by a convex or even polyhedral outer 
approximation. Branching, i.e., the division into subproblems, is typically performed on discrete 
variables that take a fractional value in the relaxation solution and on variables that are involved 
in nonconvex terms of violated nonlinear constraints. The restricted domains allow for tighter 
relaxations in the generated subproblems. 

 Over the last decades, substantial progress has been made in the solvability of both mixed-
integer linear programs and nonconvex nonlinear programs. The integration of MIP and global 
optimization of NLPs and the development of new algorithms unique to MINLP have led to a 
variety of general-purpose software packages for the solution of medium-size (nonconvex) 
MINLPs.  One of the first of this kind and still actively maintained and improved is BARON which 
implements a branch-and-bound algorithm employing LP relaxations. Later, Lindo, Inc., added 
global solving capabilities to their Lindo API solver suite. An open-source implementation of a 
global optimization solver is available with Couenne (neos-server.org/neos/solvers).  A branch-
and-bound algorithm based on a mixed-integer linear relaxation is implemented in the solver 
ANTIGONE (Vigerske and Gleixnerscip, 2016).  
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Table 7-1 Comparison of Solvers in NEOS Server for Optimal Solution (Sengupta and Pike, 
2012) 

 
Solver SBB 

(MINLP) 
DICOPT 
(MINLP) 

ALPHAECP 
(MINLP) 

BARON 
(Global) 

LINDOGLOB
AL (Global) 

OBJECTI
VE 
VALUE 

16.500316 16.500313 NA 16.49418566 NA 

SOLVER 
STATUS 

NORMAL 
COMPLETI
ON 

NORMAL 
COMPLETI
ON 

NORMAL 
COMPLETIO
N 

NORMAL 
COMPLETIO
N 

ITERATION 
INTERRUPT 

MODEL 
STATUS 

INTEGER 
SOLUTION 

INTEGER 
SOLUTION 

INFEASIBLE 
- NO 
SOLUTION 

INTEGER 
SOLUTION 

NO 
SOLUTION 
RETURNED 

Additional 
Solvers 
chosen by 
NEOS 

CONOPT 3 
(NLP) 

XPRESS 
(MIP) 
CONOPT 3 
(NLP) 

- ILOG 
CPLEX (LP) 
MINOS 
(NLP) 

- 

Iteration 
Count 

246/10000 318/10000 47/10000 0/10000 0/10000 

Resource 
Usage 

0.340/1000.0
00 

0.370/1000.0
00 

62.110/1000.0
00 

40.000/1000.0
00 

10.336/1000.00
0 

Compilatio
n Time 

0.037 
SECONDS 

0.034 
SECONDS 

0.036 
SECONDS 

0.034 
SECONDS 

0.037 
SECONDS 

Generation 
Time 

0.024 
SECONDS 

0.025 
SECONDS 

0.014 
SECONDS 

0.025 
SECONDS 

0.014 
SECONDS 

Execution 
Time 

0.026 
SECONDS 

0.027 
SECONDS 

0.016 
SECONDS 

0.027 
SECONDS 

0.016 
SECONDS 
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Table 7-2 Comparison of Solvers in NEOS Server and Local Machine (Sengupta and Pike, 2012) 

 
Solver SBB (MINLP) (NEOS 

Server) 
SBB (MINLP) (Local Machine) 

OBJECTIVE VALUE 16.500316 16.500316 

SOLVER STATUS NORMAL 
COMPLETION 

NORMAL COMPLETION 

MODEL STATUS INTEGER SOLUTION INTEGER SOLUTION 

GAMS version GAMS Rev 228 
x86/Linux 

GAMS Rev 232 WIN-VIS 23.2.1 
x86/MS Windows 

Additional Solvers chosen 
by NEOS 

CONOPT 3 (NLP) CONOPT 

Iteration Count 246/10000 214/ 2000000000 

Resource Usage 0.340/1000.000 0.359/1000.000 

Compilation Time 0.037 SECONDS 0.015 SECONDS 

Generation Time 0.024 SECONDS 0.063 SECONDS 

Execution Time 0.026 SECONDS 0.063 SECONDS 

 
 This paper (Vigerske and Gleixnerscip, 2016) described the extensions that were added to 
the constraint integer programming framework, SCIP, to allow it to solve (convex and nonconvex) 
mixed-integer nonlinear programs to global optimality with SCIP 3.1 (released in 2014). SCIP’s 
implementations of optimization-based bound tightening (OBBT), branching rules, and primal 
heuristics for MINLP are centered around an expression graph representation of nonlinear 
constraints that allowed for bound tightening, detection of convex sub-expressions, and 
reformulation that are necessary to compute and update a linear outer-approximation based on 
convex over- and underestimation of nonconvex functions.  The combination of discrete decisions, 
nonlinearity, and possible nonconvexity of the nonlinear functions in MINLP combines the areas 
of mixed-integer linear programming, nonlinear programming, and global optimization into a 
single problem class. Linear and convex smooth nonlinear programs are solvable in polynomial 
time in theory and very efficiently in practice, nonconvexities from discrete variables or 
nonconvex nonlinear functions lead to problems that are NP-hard in theory and computationally 
demanding in practice. 

 In this article (Vigerske and Gleixnerscip, 2016) the results of impact of several SCIP 
components on the MINLP solving performance show that disabling any of the investigated 
components leads to a decrease in the number of solved instances that indicates that the default 
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settings are reasonable.  The design and algorithmic features were evaluated for the impact of the 
individual components on its overall computational performance using the public benchmark set 
MINLPLib2.  SCIP is actively developed and further improvements that have been made after the 
release of version 3.1 were not included in this paper.  

Some Unique Studies for MINLP 

 In the following section, a number of unique studies and evaluations for global 
optimization algorithms and applications are described. They include connecting industrial 
flowsheeting simulators with MINLP solvers, determining process sheet configurations, and 
integrating simultaneous flow sheet optimization and heat integration, among others.  Many use 
GAMS as the source for MINLP solvers. 

 Flowsheeting simulator ChemCAD was linked to the stochastic Molecular-Inspired 
Parallel Tempering (MIPT) algorithm for a toolbox for the systematic process retrofit of complex 
chemical processes by Otte,	 Lorenz	 and	 Repke,	 2016.  The flowsheeting simulator and the 
programming software Matlab were connected using the OPC (OLE for Process Control) standard 
as communication platform for data exchange and communication between Matlab and 
ChemCAD.  The toolbox acts both as a carrier of information and for the control of ChemCAD. 
New optimization values (decision variables) from the MIPT algorithm are used in Matlab to 
execute the simulation. After the simulation is completed, the toolbox reads values from 
ChemCAD to optimize the objective function and satisfy constraints.  The methodology was used 
on the retrofit of the separation of cyclohexane, benzene, toluene, and o-xylene to determine the 
optimal operating conditions for three given cases. The result was a set of new operating points 
for the process, the energy cost for the separation, and information about whether or not the 
demand can be fulfilled. 

 The minimum vapor duty requirement was used as the objective function for each 
distillation column configuration used in petroleum crude distillation subject to material balance 
constraints by Nallasivam,	et	al.,	2016, and the Underwood equation instead of stage calculations. 
A NLP problem was developed for any non-azeotropic n-component separation problem using n-
1 columns, and it includes configurations with and without thermal coupling. The global optimum 
was determined based rank-list of all possible basic and thermally coupled distillation 
configurations with respect to their total minimum vapor duty requirements.  The optimization 
problem was formulated in MATLAB and called the GAMS/BARON optimization solver through 
the GAMS/MATLAB interface.  The optimization methodology was tested with 6,28 candidate 
configurations located having 2,125 points with local optima and 1,625 infeasible points. Ranking 
the local optimum gave the global optimum.  Other evaluations were performed with tighter 
constraints to obtain improved algorithm performance.	

 A simulation of a stand-alone chemicals’ facility was described with main products of 
aromatics and allowable by- products of gasoline, liquefied petroleum gas, and electricity using 
natural gas a feedstock by Niziolekc, Onel, and Floudas 2015.  Mass and energy balances were 
developed for the process units and linked together along with an economic model describing the 
profit based on the net present value.  A mixed integer nonlinear optimization (MINLP) model 
was formulated and solved using a branch-and-bound global optimization algorithm to determine 
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the optimal process topology.  The mixed-integer linear relaxation was solved using CPLEX96 to 
determine the lower bound of the model and CONOPT was used for nonlinear optimization.   The 
analysis was used to examine forty (40) distinct case studies across two sets of cost parameters. 

 A unit-specific event-based continuous-time MINLP formulation was described by Li, J, 
X. Xiao and C. A. Floudas, 2016 for the integrated treatment of recipe, blending, and scheduling 
of gasoline blending and order delivery operations. Operational features included non-identical 
parallel blenders, constant blending rate, minimum blend length and amount, blender transition 
times, multipurpose product tanks, changeovers, piecewise constant profiles for blend component 
qualities and feed rates, and penalty for order delivery. A hybrid global optimization was used for 
non-convexities in constant blending rates. Fourteen examples were solved to be 1% global 
optimality within modest computational effort. 

 A distillation configuration to have the total installation and operating costs be a minimum 
is described by Nallasivam, et. al., 2016, using a global minimization algorithm. For general 
multicomponent distillation problems, the search space is limited to distillation configurations that 
use exactly (n – 1) distillation columns to separate an ideal or near- ideal multicomponent mixture 
into n product streams.  Any feasible basic distillation configuration is represented by a unique 0–
1 upper triangular matrix in the matrix method and mathematical constraints ensure that only 
matrices corresponding to feasible basic distillation configurations that represent Underwood’s 
equations are included in the search space.  GAMS/BARON was used to guarantee global 
optimality with the formulation using nonlinear functions such as bilinear, fractional, or 
logarithmic functions and the search space being compact. The optimization problem was 
formulated in MATLAB and called the GAMS/BARON optimization solver through the GAMS/ 
MATLAB interface.  A heavy crude oil distillation example was used to obtain a global 
optimization-based rank-list of all configurations with respect to their minimum total vapor duty 
requirements. 

 A general modelling framework was described by Grimstada, Fossa, Heddleb, and 
Woodman, 2016, for optimization of multiphase flow networks with discrete decision variables. 
They  used graph-based models for oil and gas networks; spline-based surrogate models 
(proprietary (black-box) simulators, explicit model equations and look-up tables) to represent the 
nonlinear parts of the system that decouples the solver from the process simulator; and a global 
branch-and-bound based MINLP solver, CENSO (Convex ENvelopes for Spline Optimization), 
that exploits nonlinearities being described by splines and the structural properties of oil and gas 
networks. Case studies included three realistic production optimization cases from two BP 
operated subsea production systems. 

 Simulation-based simultaneous optimization and heat integration approach is described by 
Chen, et. al., 2015, linking a process simulator, Aspen Plus, a heat integration module (GAMS LP 
to minimize the total utility cost) and a derivative-free optimizer (Covariance Matrix Adaptation 
Evolutionary Strategy (CMA- ES) that is a global search optimization method suitable for difficult 
nonlinear nonconvex problems in continuous domains.  The capabilities are demonstrated with 
three industrial-scale cases: a methanol production process (with a recycle stream), a separation 
process for benzene, and a super- critical pulverized coal power plant with post-combustion carbon 
capture and compression. 
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 Data-driven and nonlinear models are described by Li, J., et. al., 2016, that used predict 
product yields and properties in production units of a large refinery- petrochemical complex. 
including crude distillation and vacuum distillation units, hydrocracking units, catalytic cracking 
units, ethylene-cracking units and other units.  Yield and property prediction models for the crude 
distillation and vacuum distillation units are based on crude assay data.  Binary variables denote 
different operation modes for several production units, or parallel production units. The planning 
model is a non-convex mixed integer nonlinear optimization problem that is solved using Excel 
linked to GAMS/ ANTIGONE solver.  Several large-scale industrial examples are solved to 
illustrate the efficiency of the models and global optimization. 

 A process synthesis and global optimization framework was described by Onel, et. al. 2015 
for the production of liquid fuels and olefins from biomass and natural gas used a superstructure 
with multiple conversion and production technologies and simultaneous heat, power, and water 
integration.  A nonconvex mixed-integer nonlinear optimization (MINLP) was solved with a 
mixed-integer linear (MILP) model using CPLEX79 and a NLP using CONOPT8.  The process 
superstructure consisted of:  biomass handling and gasification, natural gas conversion, synthesis 
gas cleaning, hydrocarbon production, hydrocarbon upgrading, olefins purification, and a 
wastewater treatment network.  The objective function was the summation of costs from the 
required feedstocks: natural gas, biomass, freshwater, and butanes and from electricity.  Sixteen 
distinct case studies examined the capabilities of the model, investigate trade-offs of different 
scales and different product ratios. 

 A Lipschitz Global Optimizer (LGO) solver suite for constrained nonlinear global and local 
optimization was described by Pintér, et. al., 2016 that can solve models with continuous structure 
without requiring higher order, gradient, Hessian information) and its operations are based on 
model function values. LGO is suitable for a broad range of model calibration problems, including 
completely “black box” models, in addition to standard (analytically defined) models. LGO is 
available for use with a range of compiler platforms (C/C++/C#, Fortran 77/90/95), with seamless 
links to several optimization modeling languages: AMPL, GAMS, MPL, Excel, Maple, 
Mathematica, and MATLAB.  The analytical formulation of a nonlinear regression model is 
outlined for an optimization problem objective function for an application study a scientific 
instrument, installed on-board of the International Space Station to study the Sun’s effect on the 
Earth’s atmosphere.  Details are provided in the article. 

 Simplicial global optimization focuses on deterministic covering methods for global 
optimization by partitioning the feasible region by simplices as described by Paulavicˇius, and 
Žilinskas, 2014. A simplex is a polyhedron in a multidimensional space, which has the minimal 
number of vertices. The feasible region defined by linear constraints are covered by simplices. The 
objective function at all vertices of partitions are used to evaluate subregions.  Several algorithms 
using this method are described, and these algorithms are evaluated using a number of classical 
test optimization problems.  All optimization problems that were solved had linear constraints, a 
requirement for the algorithms to locate the global optimum. 

 Air Liquide operates an industrial gas pipeline network connecting air separation plants to 
customers of industrial gases with three pipelines: one gaseous oxygen and two gaseous nitrogen 
pipelines (Puranik, et. al., 2016). There are four air separation plants, each connected to at least 
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one of the pipelines that produce high pressure, low pressure and medium pressure gaseous oxygen 
and nitrogen as well as liquid oxygen, liquid nitrogen and liquid argon. Gaseous products can also 
be bought from two competitor plants connected to the network. The demand for gaseous products 
can be partially satisfied through the vaporization of liquefied gases from storage. The model to 
describe the network uses a utilize regression-based approximate models based on historic plant 
data and uses a rolling horizon basis for a single time step after the uncertain demands and 
electricity prices are revealed. The objective is to minimize the total cost of supply to all the 
customers. The cost includes the total cost of production in every plant, the cost of buying gas 
from competitors and the cost of vaporizing gases from the liquid storage if required.  The 
optimization model is nonconvex, necessitating the use of global optimization techniques.  Results 
represent five different instantiations of uncertain parameter values, including atmospheric 
conditions, electricity prices as well as the prices of gas and liquid products. The MINLP model 
has 368 equality and 463 inequality constraints. There are 589 continuous and 136 binary variables 
in the model.  BARON 15.9 was the only solver that can currently solve all five cases without any 
solver errors or incorrect infeasibility claims. Using MILP relaxations was required for BARON 
to solve the problems studied in realistic computing times.  

 The production of liquid transportation fuels proceeds through a synthesis gas (syngas) 
intermediate that can be directed to either the Fischer–Tropsch refining or methanol conversion. 
A process synthesis framework for a WTL refinery was developed and included: municipal solid 
waste gasification with/without recycle gas, syngas conversion via Fischer–Tropsch (FT) refining 
or methanol synthesis, methanol conversion via methanol-to-gasoline (MTG) or methanol-to-
olefins (MTO), hydrocarbon upgrading via ZSM-5 zeolite catalysis, olefin oligomerization, or 
carbon number fractionation (Niziolek, et.al. 2015). The major liquid fuels products from the 
refinery include gasoline, diesel, and jet fuel, whereas liquefied petroleum gas (LPG) and 
electricity were to be sold as byproducts. The objective function was minimized to deter- mine the 
lowest cost of a WTL refinery includes the feedstock cost, CO2 sequestration cost, levelized 
investment cost, electricity cost, and profit obtained from the sale of byproduct LPG.  A large-
scale nonconvex mixed-integer nonlinear optimization (MINLP) model was used determine the 
optimal process topology for liquid fuels production from many topological alternatives. A 
rigorous global optimization branch-and-bound strategy was employed to guarantee the global 
optimum objective function was determined.  A mixed-integer linear relaxation was solved at each 
node via CPLEX. At each initial point, the binary variables were fixed, and CONOPT was called 
to solve the nonlinear optimization model (NLP).  Twelve case studies illustrated the application 
of the MINLP model, and they included three sets that examined the production of different ratios 
of products: an unrestricted fuel output, maximization of diesel and the optimal process topologies. 

 This collection of papers on global optimization (Liberti and Nelson, 2006) describes 
details used in global optimization: symbolic manipulation algorithms, techniques for algebraic 
transformations, and efficient global optimization heuristics and metaheuristics for nonconvex 
constrained optimization problems.  They include new global optimization methods, 
implementation of existing solvers and guidelines about building new global optimization 
software. 

 Crude oil scheduling with demand uncertainty for a typical marine-access refinery (Li, 
Misener and Floudas, 2012) has crude oil unloading, storage and processing that involves offshore 
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buoy mooring stations for crude unloading and onshore facilities for crude unloading and 
processing. Different types of crudes can be blended in crude storage tanks. After blending, the 
streams are fed into the refinery units for processing.  In crude oil scheduling operations, 
uncertainties are in demand fluctuations from ship arrivals, crude quality specifications, and some 
economic coefficients that can be described using discrete or continuous distributions. An example 
with an off-shore pipeline, five storage tanks, and two process units with a specified scheduling 
horizon and nominal demands was solved with a branch and bound global optimization algorithm 
using GAMS 22.6/CPLEX 11.0 to within 1% of global optimality. This new approach converted 
demand equality constraints to inequalities, and the branch and bound global optimization 
algorithm was extended to solve the deterministic robust counter-part optimization model. The 
computational results show that the generated schedule is more robust than the nominal schedule. 

 Random search, adaptive search, Markovian algorithms, population algorithms are defined 
by Schaffler, 2012.  The best-known Markovian algorithm is simulated annealing.  Population 
algorithms keep a set (the so-called population) of feasible points as a base to generate new points 
(by random). The set of points evolves by occasionally replacing old by newly generated members 
according to function values.  A special type of population algorithms became popular under the 
name Genetic Algorithms. Similar population algorithms became known under the names of 
evolutionary programming, genetic programming, and memetic programming. “The lack of 
theoretical foundations and consequently of theoretical analysis of this type of algorithms is 
usually compensated by an exuberant creativity in finding terms from biology like evolution, 
genotype, selection, reproduction, recombination, chromosomes, survivor, parents, and 
descendants. The fact that these algorithms are still very popular is caused by this practice.  
Population algorithms have a large number of parameters in general: The MATLAB Genetic 
Algorithm, for instance, can be adjusted by setting 26 parameters.  In 1995, the biological 
terminology was enlarged by names like “swarming intelligence” and “cognitive consistency” 
from behavior research without improvement of the methods.” For unconstrained global 
optimization, detailed mathematics and examples are given for the randomized curve of steepest 
descent. For constrained global minimization, an active set method is recommended using the 
randomized projected curve of steepest descent.  The text is concluded with vector optimization 
and a review of probability theory.  

 Process synthesis and design is the selection of the topology, the flowsheet, and the 
operating conditions to transform a set of raw materials into products and involves discrete and 
continuous decisions giving rise to a mixed-integer nonlinear programming problem (MINLP) or 
a generalized disjunctive programming (GDP) model according to Martin, 2014.  Descriptions and 
examples of using GAMS for optimization of an ammonia reactor, SO2 catalytic converter, steam 
reforming of natural gas, and process superstructure are given, including GAMS programs.  

 Generalized disjunctive programming (GDP) originated with the goal of facilitating the 
modeling of discrete/continuous optimization problems through the use of higher-level logic 
constructs. This approach involves algebraic equations, disjunctions and logic propositions in the 
formulation of a model. Details and examples are given by Grossmann and Trespalacios, 2013.   
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Multiobjective Optimization 

 Multiobjective optimization, also called multicriteria optimization, is the simultaneous 
optimization of more than one objective function. The general Multiobjective Problem (MOP) is 
defined as in Equation 7-3: 

Optimize:  F(x) = [f1(x), f2(x), …, fk(x)]T        
                  (7-3) 

Subject to:  gi(x) ≥ 0  i = 1, 2, …, m     

  hj(x) = 0  j = 1, 2, …, p 

    xL≤ x ≤ xU 

 There are various methods to solve multicriteria optimization problems like utility 
function, hierarchical methods and goal programming (Rangaiah and Bonilla-Petriciolet 2013 and 
Rao, 2009). Of these, using the utility function or weighted objective method is the most 
commonly used. In this method, weights are assigned to the different objective functions and the 
sum of the weights times the objective functions is formed for a single objective function as shown 
in Equation 7-4. 

 min , where ,       (7-4) 

 The multicriteria problem can be a mixed integer nonlinear programming problem where 
the multiple objective functions and the constraints are non-linear, and the variables are continuous 
or integer. The MINLP problem in the research described below was formulated into a multi-
criteria problem by maximizing the profit and the sustainability credits simultaneously.  

 A detailed review of multicriteria optimization in sustainable energy decision-making was 
given by Wang et al., 2009. Technical criteria, economic criteria, environmental criteria and social 
criteria were discussed in the paper along with weighted objective methods.  

Multiobjective Optimization Problem Statement for a Chemical Production Complex  

 The statement for the optimization problem for a chemical production complex by 
Sengupta and Pike, 2012 is: 

 Optimize:  Objective Function 

 Subject to:  Constraints from plant models 

The objective function is a profit function for the triple bottom line, Equation 7-5.  

Triple Bottom Line = Profit - Σ Environmental Costs + Σ Sustainable (Credits – Costs)   (7-5) 
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The profit in Equation 7-5 is described using an extended value-added economic model, Equation 
7-6. 

 
Profit = Σ Product Sales – Σ Raw Material Costs - Σ Energy Costs                     (7-6) 

 
Substituting in Equation 7-5 gives the objective function used in the multicriteria optimization. 
 
Triple Bottom Line = Σ Product Sales – Σ Raw Material Costs - Σ Energy Costs – 
   Σ Environmental Costs + Σ Sustainable (Credits – Costs) 
 
 The constraint equations describe relationship among variables and parameters in the 
processes and plants. Equality constraints are material and energy balances, chemical reaction 
rates, thermodynamic equilibrium relations and others. Inequality constraints are availability of 
raw materials, demand for products, capacities of process units and others. 

 The objective of multicriteria optimization is to find optimal solutions that maximize 
industry’ profits and minimize costs to society. This multicriteria optimization problem can be 
stated as in terms of industry’s profit, P, and society’s sustainable credits/costs, S; and these two 
objectives are given by Equation 7-7.  

Max: P = Σ Product Sales - Σ Economic Costs - Σ Environmental Costs         (7-7)          
 S = Σ Sustainable (Credits – Costs) 
  
Subject to:    Multi-plant material and energy balances, 
  product demand, raw material availability, plant capacities 
 

 To locate Pareto optimal solutions, multi-criteria optimization problems are converted a 
single criterion by applying weights to each objective and optimizing the sum of the weighted 
objectives as shown in Equation 52 where w1 + w2 =1. 

Max:      w1P + w2 S  = w1 P + (1- w1) S      (7-8) 

Subject to: Multi-plant material and energy balances,  

  product demand, raw material availability, plant capacities 

 If w1 is 0, then only industry profits are considered, and no sustainable costs/credits are 
included.  If w1 = 1 the only sustainable costs/credits are evaluated at the Pareto optimum. With 
w1 = 0.5 industry profits and sustainable cost/credits are weighted equally.  Results are summarized 
in Figure 35 for the chemical production complex.  It is another decision to determine the specific 
value of the weight that is acceptable to all concerned.   

 The Chemical Complex Analysis System was used to determine the Pareto optimal 
solutions for the weights using w1+w2=1 given by Equation 7-8, and these results are shown in 
Figure 7-2. The profits for the company are two orders of magnitude larger than the sustainable 
credits/costs. The sustainable credits/costs decline, and company’s profits increase as the weight, 
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w1, on company’s profit increase. For example, when w1=1, the optimal solution is shown in Table 
7-3 for P=$1660.01 million per year and S=$-9.98 million per year. The optimal solution with 
w1=0 gave P=$1193.45 million per year and S=$26.00 million per year. The points shown in 
Figure 7-2 are the Pareto optimal solutions for w1 from 0 to 1.0 for increments of 0.001.  
 
 The values for w1 equal to 0 and 1.0 and some intermediate ones are shown in Table 7-3. 
The optimal complex configurations of the Pareto optimal solutions for w1 from 0 to 1.0 for 
increment of 0.001 are shown in Table 7-3. If a process is selected, the binary variable associated 
with the process is 1, otherwise 0. For each process in Table 7-3, the sums of the binary variable 
values for the corresponding w1 range are shown, along with the total summation of the times the process 
was selected. See Sengupta and Pike, 2012. 
 

 

 
 

Figure 7-2 Optimal Solutions Generated by Multicriteria Optimization 
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P=$1,194 M/yr
S=$26 M/yr
w1: 0.000-0.003

P=$1,346 M/yr
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Summary 
 
 Global optimization algorithms are either deterministic or stochastic methods. The most 
successful deterministic strategies include inner and outer approximation methods, branch and 
bound methods, cutting plane methods and interval bounding methods. Successful stochastic 
strategies include random search, genetic algorithms and simulated annealing. 

 Chemical process systems optimization problems frequently involve both continuous and 
binary variables and have the form of mixed integer nonlinear programming (MINLP) problems.  
The continuous variables represent the flow rates, temperature, pressures, etc., and binary variables 
represent the configuration of process units.  These problems have been difficult to solve, and a 
significant amount of research has been spent developing algorithms that are effective in solving 
MINLP problems for the global optimum.   

 Deterministic optimization of a MINLP problem for a chemical process system is usually 
accomplished using an algorithm like the branch and bound or the inner-outer method. These 
algorithms solve a series of NLP problems that typically use the generalized reduced gradient 
method (GRG) or successive (sequential) quadratic programming (SQP). These NLP algorithms 
have a super-rate of convergence and locate the optimum in 2n steps for quadratic functions. 

 Branch and bound methods use a systematic enumeration of candidate solutions that are 
thought of as forming a tree with the full set of solutions at the top of the tree. The algorithm 
explores branches of this tree that represent subsets of the solution set. Each branch is checked 
against upper and lower estimated bounds on the optimal solution and branches are discarded if 
they cannot produce a better solution than the best one found so far by the algorithm 

 Nonconvex MINLPs pose additional challenges, because they contain nonconvex 
functions in the objective and or the constraints. Spatial branch-and-bound is the best-known 

Table 7-3 Values of the Pareto Optimal Solutions shown in Figure 7-2 
Profit 
(million dollars/year) 

Sustainable Credits/Costs 
(million dollars/year) 

Weight (w1) 

1660.01 -9.98 1 
1660.01 -9.98 0.894 
1660.01 -9.98 0.107 
1369.32 24.74 0.106 
1369.32 24.74 0.036 
1346.26 25.60 0.035 
1346.26 25.60 0.004 
1193.94 26.00 0.003 
1193.45 26.00 0 
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method for solving nonconvex MINLP problems. Most modern MINLP solvers designed for 
nonconvex problems utilize a combination of the techniques. In particular, they are branch-and-
bound algorithms with at least one rudimentary bound-tightening technique and a lower-bounding 
procedure.  

 The General Algebraic Modeling System (GAMS) is a high-level modeling language for 
mathematical programming and optimization. It was specifically designed for solving linear, 
nonlinear and mixed integer optimization problems. The system is especially useful with large, 
complex problems. GAMS is available for use on personal computers, workstations, mainframes 
and supercomputers. 

 An overview of the start-of-the-art in software for the solution of mixed integer nonlinear 
programs (MINLP) is given by Bussieck and Vigerske, 2014, of GAMS that describes various 
features of embedded and independent solvers with a concise description for each solver to provide 
to guide the selection of a best solver for a particular MINLP problem.  Methods used by several 
established MINLP solvers include BARON, COCONUT, COUENNE and LindoGlobal.   



	 349	

References 

Aarts, E. H. L. and H. M. M. Ten Eikelder, 2002, “Simulated Annealing,” Handbook of Applied 
Optimization, Pardalos, P. M. and M. G. C. Resende, Editors, Oxford University Press, New 
York, NY 

Belotti, Pietro, Christian Kirches, Sven Leyffer, Jeff Linderoth, Jim Luedtke, and Ashutosh 
Mahajan, (2012) Mixed-Integer Nonlinear Optimization, Preprint ANL/MCS-P3060-1112, 
Mathematics and Computer Science Division, Argonne National Laboratory, November 22, 
2012 

Bussieck, M. R. and S. Vigerske, “MINLP Solver Software,” GAMS Report, GAMS 
Development Corp., 1217 Potomac St, NW Washington, DC 20007, USA (March 10, 2014) 

Byrne, R. P. and I. D. L. Bogle, (2000), Global Optimization of Modular Process Flowsheets,	Ind. 
Eng. Chem. Res. 2000, 39, 4296-4301 

Chen, Y., J. C. Eslicka, I. E. Grossmann, D. C. Miller “Simultaneous process optimization and 
heat integration based on rigorous process simulations,” Computers and Chemical Engineering 
81 (2015) 180–199 

Choi, S. H. and Vasilios Manousiouthakis, 2002, Global Optimization Methods for Chemical 
Process Design: Deterministic and Stochastic Approaches, Korean J. Chem. Eng., 19(2), 227-232. 
Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization and Machine Learning, 
Addison –Wesley, New York 

Gray, P.  W. Hart, L. Painton, C. Phillips, M. Trahan, J. Wagner, A Survey of Global 
Optimization Methods, Sandia National Laboratories, Albuquerque, NM 87185 
www.cs.sandia.gov/opt/survey/ accessed 11/11/2014 

Grimstada, B, B. Fossa, R. Heddleb, and M. Woodman, “Global optimization of multiphase flow 
networks using spline surrogate models,” Computers and Chemical Engineering 84 (2016) 237–
254 

 Grossman, I.E., 1990, "MINLP Optimization and Algorithms for Process Synthesis," Foundations 
of Computer Aided Process Design, J.J. Sirola, I.E. Grossman and G. Stephanopoulos, Eds., 
Elsevier, New York. 

Grossmann, I. E., and F. Trespalacios, 2013, “Systematic modeling of discrete-continuous 
optimization models through generalized disjunctive programming,” AIChE Journal, Volume 59, 
Issue 9, September 2013, Pages 3276–3295 

Jeroslow, R. C. (1973), There Cannot be any Algorithm for Integer Programming with Quadratic 
Constraints. Operations Research 21(1):221-224 

Jeroslow, R. C. (1974),	 Trivial Integer Programs Unsolvable by Branch-And-Bound, 
Mathematical Programming 6 (1974) 105-109. 



	 350	

Kronqvista	Jan, D. E. Bernalb, A. Lundellc, and I. E. Grossmann, 2018 A Review and Comparison 
of Solvers for Convex MINLP, Optimization Online, Mathematical Optimization Society, June 5, 
2018. 

Li J., R. Misener and C. A. Floudas, “Scheduling of Crude Oil Operations Under Demand 
Uncertainty: A Robust Optimization Framework Coupled with Global Optimization,” AIChE 
Journal Vol. 58, No. 8, August 2012 

Li J., X. Xiao, C. A. Floudas, “Integrated Gasoline Blending and Order Delivery Operations: 
Part I. Short-Term Scheduling and Global Optimization for Single and Multi-Period Operations,” 
Vol. 62, No. 6 AIChE Journal, p. 2043-2070 (2016). 

Li, J., F. Boukouvala, X. Xiao, C. A. Floudas, B. Zhao, G. Du, Xin Su, and H. Liu, “Data-Driven 
Mathematical Modeling and Global Optimization Framework for Entire Petrochemical Planning 
Operations,” doi: 10.1002/aic.15220, American Institute of Chemical Engineers, 2016 

Liberti, L., M. Nelson, Eds., “Global Optimization: from Theory to Implementation,” Springer 
Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA, 2006 

Martin, M. M., “Use of GAMS for Optimal Process Synthesis and Operation,” Introduction to 
Software for Chemical Engineering, Chapter 11, CRC Press, Boca Raton, FL 2014. 

Nallasivam, U., V. H. Shah, A. A. Shenvi, J. Huff, M. Tawarmalani and R. Agrawal, “Global 
Optimization of Multicomponent Distillation Configurations: 2. Enumeration based Global 
Minimization Algorithm,” AIChE Journal, doi: 10.1002/aic.15204, © 2016 American Institute of 
Chemical Engineers (AIChE) 

Nallasivam, U., V. H. Shah, A. A. Shenvi, J. Huff, M. Tawarmalani and R. Agrawal, “Global 
Optimization of Multicomponent Distillation Configurations: 2. Enumeration Based Global 
Minimization Algorithm,” AIChE Journal, Vol. 62, No. 6, p. 2071- 2086 (June,2016). 

Niziolek, A. M., O. Onur, M.M. Faruque Hasan, C. A. Floudas, “Municipal solid waste to liquid 
transportation fuels – Part II: Process synthesis and global optimization strategies,” Computers 
and Chemical Engineering 74 (2015) 184–203 

Niziolekc, A. M., O. Onel, and C. A. Floudas, “Production of Benzene, Toluene, and Xylenes 
from Natural Gas via Methanol: Process Synthesis and Global Optimization,” 
doi:10.1002/aic.15144, © 2015 American Institute of Chemical Engineers (AIChE) 

Onel, O, A. M. Niziolek, J. A. Elia, R. C. Baliban, and C. A. Floudas,” Biomass and Natural Gas 
to Liquid Transportation Fuels and Olefins (BGTL+C2_C4): Process Synthesis and Global 
Optimization,” Ind. Eng. Chem. Res. 2015, 54, 359−385 

Otte, D. H-M. Lorenz and J. W. Repke, “A toolbox using the stochastic optimization algorithm 
MIPT and ChemCAD for the systematic process retrofit of complex chemical processes,” 
Computers and Chemical Engineering 84 (2016) 371–381  



	 351	

Pardalos, P. M. and M. G. C. Resende, Editors, 2002, Handbook of Applied Optimization, 
Oxford University Press, New York, NY 

Paulavicˇius, R. and Julius Žilinskas, Simplicial Global Optimization Springer New York 
Heidelberg Dordrecht London, 2014 

Pike, Ralph W. 2013, Optimization for Engineering Systems Revised, (Kindle Edition) ASIN: 
B00BF2TLXO Amazon.com (2013) 

Pinter, J. D., 2014, “How Difficult is Nonlinear Optimization? A Practical Solver Tuning 
Approach, with Illustrative Results “Optimization Online, Mathematical Optimization Society, 
June, 2014 

Pintér, J. D., A. Castellazzo, M. Vola2, and G. Fasano, “Nonlinear Regression Analysis by 
Global Optimization: A Case Study in Space Engineering,” Optimization Online Digest, March 
2016 

Puranik, Y., M. Kılınç, N. V. Sahinidis, T. Li, A. Gopalakrishnan, B. Besancon, and T. Roba, 
“Global optimization of an industrial gas network operation,” AIChE Journal, doi: 
10.1002/aic.15344, May 19, 2016 

Rangaiah and Bonilla-Petriciolet 2013, Multiobjective Optimization in Chemical Engineering: 
Developments and Applications, Wiley, Hoboken, NJ 

Rao, 2009, Engineering Optimization Theory and Practice, Fourth Ed., Wiley, Hoboken, NJ 

Sahinidis, Nick, 2005, Global Optimization and Optimization under Uncertainty, Pan American 
Study Institute on Process Systems Engineering, Iguazu Falls, Argentina, August 18, 2005 

Schaffler, S., Global Optimization A Stochastic Approach, Springer New York 2012 

Sengupta, D and R. W. Pike, Chemicals from Biomass: Integrating Bioprocesses into Chemical 
Production Complexes for Sustainable Development, CRC Press, Boca Raton, FL, 2012. 

Trafalis, T. B. and S. Kaspa 2002, “Artificial Neural Networks in Optimization and 
Applications,” Handbook of Applied Optimization, Pardalos, P. M. and M. G. C. Resende, 
Editors, Oxford University Press, New York, NY  

Trespalacios, F., and I. E. Grossmann, (2014) “Review of Mixed-Integer Nonlinear and 
Generalized Disjunctive Programming Methods,” Chem. Ing. Tech. Vol. 86, No. 7, 991–1012, 
2014 

Vigerske, S. and A. Gleixnerscip, “Global Optimization of Mixed-Integer Nonlinear Programs in 
a Branch-and-Cut Framework,” ZIB Report 16-24, Zuse Institute Berlin, Takustrasse 7 D-14195 
Berlin-Dahlem Germany, May 2016 

Wang, W-U, et al, 2009, Review on multi-criteria decision analysis aid in sustainable energy 
decision-making, Renewable and Sustainable Energy Reviews 13(9) 


